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A spectral entropy method for distinguishing regular and 
irregular motion of Hamiltonian systems 
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Department of Applied Mathematics, Queen Mary College, University of London, Mile 
End Road, London E l  4NS, UK 

Received 30 January 1979 

Abstract. Regular and irregular motions of bounded conservative Hamiltonian systems of 
N degrees of freedom can be distinguished by the structure of the frequency spectrum of a 
single trajectory. The spectral entropy S is introduced which provides a measure of the 
distribution of the frequency components. Numerical calculations on the model HCnon and 
Heiles system and a realistic molecular model are performed. Power spectra are obtained 
from numerical solutions to Hamilton’s equations using fast Fourier transforms and the 
Hanning method. For regular trajectories S is found to stabilise after a finite time of 
integration, while for irregular cases S increases erratically. Estimates of the relative 
volume of regular regions of phase space as a function of energy are given for the two 
systems. 

1. Introduction 

Conservative Hamiltonian systems of a finite number of degrees of freedom exhibit two 
significant types of bounded classical motion-regular and irregular. Regular and 
irregular motion may be distinguished by the form of phase space trajectories, or by the 
structure of the frequency spectra of the motion. A regular trajectory of a system of N 
degrees of freedom is wound onto an N-dimensional torus in the 2N-dimensional phase 
space, and the motion has a discrete frequency spectrum. Almost all bounded tra- 
jectories of integrable systems are regular, and this includes all systems which are linear, 
separable or of one degree of freedom. An irregular trajectory normally wanders 
throughout a region of phase space of dimension greater than N, and typically 
throughout a significant fraction of an energy shell of dimension 2 N  - 1. Its frequency 
spectrum is not discrete. Irregular trajectories are strongly unstable and are not so well 
understood as the regular trajectories. For certain systems, such as a particle moving on 
a surface of constant negative curvature, all bound trajectories are irregular and also 
ergodic, but this is exceptional (Sinai 1961). 

Numerical experiments strongly suggest that, for most systems where bounded 
motion takes place, motion can be regular or irregular, and both are significant. Those 
parts of phase space occupied by regular trajectories are named the regular regions, and 
those parts occupied by the irregular trajectories are the irregular regions (Whiteman 
1977). The motion in irregular regions is sometimes called stochastic or unstable 
motion. 
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Because the motion is so different in the regular and irregular regions, we would like 
to know the volumes of each for many applications, such as the motion of stars in a 
galaxy (Contopoulos 1963, 1970, 1971), the motion of particles in accelerators and 
magnetic traps (Dunnett et a1 1968), the structure of magnetic field lines in plasma 
containment devices (Arnol’d 1963), the theory of thermal conductivity, and also the 
dynamics and vibrational spectra of polyatomic molecules, which are our principal 
concern (Percivall973,1977, Percival and Pomphrey 1976a, b, Noid etal 1977, Handy 
e ta l  1977). 

A review of regular and irregular motion is given by Whiteman (1977). 
The regular and irregular regions of phase space have a very complicated inter- 

leaved structure which makes rigorous estimates of their volume difficult even for the 
simplest cases. The existence of a regular region of positive volume for an integrable 
system subject to a slight perturbation is the subject of KAM theory, and the proofs of 
Arnol’d (1963) and Moser (1962) provide rigorous positive lower bounds on the 
volume of regular regions for sufficiently small perturbations. But HCnon (1966) has 
pointed out that the perturbation has to be smaller than in suitable units for ant 
such a bound to be given by these proofs, so the rigorous theory does not yet provide a 
useful bound. 

The theory of overlapping resonances (Rosenbluth et a1 1966) provides a non-  
rigorous estimate for the volume of the regular region, but numerical tests show errors 
of about a factor of 2 (Chirikov 1979) or more, which is not adequate for many 
purposes. 

Estimates based on stepwise numerical integration of trajectories are not rigorous, 
but they can be useful in practice. 

The classical Hamiltonian models of real physical systems are never exact. There is 
a maximum time TM which is an approximate measure of the interval over which the 
model may be considered valid. The Hamiltonian motion need not be considered over 
a time longer than the time TM, which can be measured in units of a typical period T, of 
the motion of the system. For example, in a linear system T, would be the shortest 
fundamental period, and for perturbed linear systems it would vary from this value by a 
small factor only. 

For stars in the galaxy and for molecules T M / T c  is of the order of a few hundred or 
thousand. For particles in fields TM/Tc can have a wide range up to lo9 or lo’*, and for 
the solar system TM/ T, is probably of order lo9. 

Strictly the distinction between regular and irregular motion is made over infinite 
intervals of time. A regular trajectory always remains in an N-dimensional torus. But 
in practice it is not possible to integrate numerically over infinite intervals, nor is it 
necessary to consider intervals longer than the time T M  of the system under considera- 
tion. Over finite intervals which are sufficiently long, most bound trajectories appear to 
be regular or irregular, with a relatively small number of ambiguous intermediate cases. 

The estimation of volumes of regular and irregular regions by integration of 
trajectories consists of three stages: 

(Sl)  Choice of initial conditions for the sample of trajectories. 
(S2) Integration of trajectories. 
(S3) Classification of trajectories as regular or irregular. 

Each stage may be carried out by a variety of methods which take different times of 
computation and which introduce different errors. Stage S1 can be performed using 
standard Monte Carlo methods of sampling in phase space, and stage S2 by one of the 
many methods of stepwise integration. Stage S3 is not so simple. A standard method 
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uses the intercepts of the phase space trajectories with Poincarb’s surfaces of section 
(e.g. HCnon and Heiles 1964), and this enables the dynamics to be visualised clearly, but 
the method is difficult to extend to systems of more than two degrees of freedom. The 
method of Greene (1968) using closed trajectories also has this problem, as closed 
trajectories are increasingly difficult to find as the number of degrees of freedom 
increases. Another method uses the divergence of trajectories with neighbouring initial 
points in phase space, but this requires the integration of further trajectories to 
determine whether one trajectory is regular or irregular. Fourier transforms have been 
used by Noid et a1 (1977) and by Hansel (1978) to study the properties of regular and 
irregular trajectories, but the latter uses divergence in order to distinguish them. 

We describe a method based on fast Fourier transforms of the motion and on an 
entropy measure, named the Fourier entropy, which can be used for systems of an 
arbitrary number of degrees of freedom, but which requires analysis of only one 
trajectory. A divergence method is used for purposes of comparison, and the methods 
are applied to the standard Hbnon-Heiles potential and to a realistic molecular 
potential by way of example. 

Section 2 describes the Fourier transforms of regular trajectories, introduces the 
Fourier entropy and explains the numerical method used to obtain it. 

In practice numerical integrations have to be performed over a finite time interval. 
This causes modifications to the transform which make the estimate of the Fourier 
entropy difficult. The difficulty is overcome by the Hanning method described in 0 3. 

Section 4 discusses the irregular trajectories and the form of the divergence of their 
Fourier entropy. In P 5 the method is applied to the standard model Hbnon-Heiles 
potential for purposes of comparison, and to a model potential for a molecule in order 
to show that the method is practical for a more complicated realistic example. 

2. Fourier transforms for regular trajectories 

For convenience we define the Fourier transform of a function f(t) to be 
m 

F ( w )  = dr f ( t )  exp(-iwr) 

or 
m 

F ( v )  = I-, dt f(t) exp(-2?rivt), 

(2.la) 

(2.16) 

where w is the angular frequency and v = w / 2 ~  is the frequency. The trajectories and 
their transforms have to be obtained numerically, and inevitably there are errors. Since 
the computing time is significant, care must be taken to ensure that each source of error 
is identified and minimised, given the time available for computation. In practice this 
leads to an error-matching problem typical of computational physics (Percival 1976). 

The functions representing the trajectories extend into the infinite past and future. 
They are not quadratically integrable, and the numerical estimation of their transforms 
requires some care. The two types of trajectory, regular and irregular, behave very 
differently and have different kinds of transform, so we consider them separately. 

The regular trajectories are wound onto invariant tori in phase space. They are 
conditionally periodic, so that any dynamical variable f which is a function of q and p, 
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the generalised coordinates and momenta, depends on time as a function: 

f(t) = f ( q ( t ) ,  P O ) )  = C fS,. .+, exp[i(slw? +, . . +sficN)rl 
S , ,  .SN 

= fs exp(is . w C r ) ,  (2 .2 )  
P 

where all vectors have dimension N, the number of degrees of freedom. The function 
f(t) clearly depends on the choice of trajectory. The vector s has integer components, 
and the summation over s covers all possible integer N-vectors. The vector a' is a 
characteristic angular frequency vector with components which are the fundamental 
angular frequencies of the motion. 

If N = 1, then equation ( 2 . 2 )  is a simple Fourier summation for a periodic function, 
but for higher dimensions the motion is periodic only for exceptional Hamiltonians or 
exceptional orbits. For non-linear systems all angular frequencies of the type R =  
s - a', for arbitrary integer vector s, can appear, but for smooth functions f(t) the 
Fourier coefficientsf, decrease rapidly with Is], so that the sum in (2 .2 )  is dominated by a 
few terms. 

It is convenient to label the frequencies i2 which contribute significantly to the sum 
by a single integer 

(2.3) r = .  . . -3, -2 ,  - l , O ,  1 , 2 , 3 , .  . . 
so that i2, are in order of increasing frequency. The Fourier sum then becomes 

f c t )  = fi e x p ( W ) .  (2.4 
r 

Because the function f ( t )  has this form, its Fourier transform can be written 

F = 2 T 1 f r  6 ( w - a, ) = 1 f, 6 ( v - V, I ,  12.5 
r r 

where 

V r  = ilr/277-. (2.61 

The regular motion is characterised by a countable number of frequency 
components and is generally dominated by relatively few of them. A natural measure of 
the degree of spread over a number of components is the entropy, which we use as a 
standard measure. 

We can think of the quantity 

( 2 . 7 )  

as a probability associated with the frequency component U,. The spectral entropy for 
the dynamical variable f is then defined as 

s = -C Pr In Pr. 12.81 
r 

For a vector variable f it is given by the same expression with 
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For Hamiltonian systems with a Hamiltonian function of the form 

H = cp2 + V(r) ,  (2.10) 

with p a momentum conjugate to r, we find it particularly convenient to use the entropy 
of the momentum p, which is the entropy of the power spectrum. 

In a numerical integration of trajectories we cannot obtain the coefficients f ,  
directly, since we do not know the frequencies, and we can only integrate for a finite 
time. We have to obtain the Fourier transform, which gives an approximation to the 
expression (2.5) in which the S functions appear as peaks of finite height. 

Any numerical Fourier transform has itself to be approximated by a finite Fourier 
sum. This is not to be confused with any of the sums above and involves two quite 
distinct approximations to equation (2.1). They are: 

(Al )  The infinite integral is replaced by an integral over a finite interval of time 
(-T/2, T/2). 

(A2) The integral over the finite time interval is replaced by a sum over a finite 
number of points in this interval, normally equally spaced at a fixed distance At apart, 
such that 

T = MAt, (2.11) 

where M is a large integer. Normally a simple sum with equal weights is used or the 
advantage of fast Fourier transform (FIT) methods is lost. 

First consider the effect on the transform F ( w )  of the functionf(r) caused by the use 
of a finite, rather than an infinite, time interval. The modified transform is the transform 
of the product of f ( r )  and the square pulse 

(2.12) 

The transform is therefore given by 
T / 2  W W 

dtf(t) exp(-2wivt) = d t f ( t ) g ( t )  exp(-2wivt) = dv‘ F ( v  - v’)G(v’) I,, I, I, 
=F(v )*G(v ) ,  (2.13) 

where the * represents a convolution and 

G ( v )  = T sin(wvT)/wvT (2.14) 

is the transform of the square pulse, and approximates the S function. In the frequency 
domain the width of G ( v )  is of the order 2Av = 2/T. A term in f ( t )  of the form 
exp(2wivot) of frequency vo is transformed into a constant times G(v  - yo), which is 
centred at v = YO. Two components with frequencies vo and v 1  which are closer than 
2Av are difficult to distinguish in the frequency domain, where their G functions 
overlap. The longer the time T, the smaller is AY, and the finer the detail in the Fourier 
spectrum that it is possible to distinguish. 

The function G ( v )  has many side-lobes (see figure l (a))  which cause serious 
difficulties with the numerical estimate of the entropy. Section 3 on the Hanning 
function shows how these difficulties are overcome. 

Given that the form of the transform is smeared out for details finer than about 
AV = 1/T, there is little to be gained by tabulating the transform at any mesh finer than 
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AV. We therefore choose to tabulate at the points 

V I  = 1 AV = I /  T, 1=0 ,*1 ,*2 , .  * .  . (2.15) 

Note that F ( - U )  = F(v )* ,  by the reality of f(t). 
For a regular trajectory, each member of the Fourier series (2.5) contributes a S 

function to the correct Fourier transform and a G function to the approximate Fourier 
transform. If one of the frequencies U, happens to be a multiple of AV, then the 
tabulated transform will be non-zero at the characteristic frequency only, a perfectly 
adequate representation of the S function. However, if v, is not a multiple of AV, there 
are significant non-zero values over a wide range of frequencies. This inconsistency 
plays havoc with the estimate of the entropy, but is overcome by the use of the Hanning 
function. 

Now consider the approximation A2 of replacing the Fourier integral (2.13) by a 
sum over equal intervals of time At = TIM at the points 

ti = -$T + ( j -$)At ,  j = l , 2  , . . . ,  M. (2.16) 

This introduces an artificial frequency cut-off at vM = l /At ,  so the value of At which 
should be used is simply determined by the condition that it is the largest At for which 
there are no significant components with frequencies vr higher than vM. For smooth 
potentials, where the size of the components decreases rapidly with frequency, this 
causes no problems. 

When both approximations A1 and A2 are made, the Fourier integral reduces to a 
finite sum 

(2.17) 

where fj =f(tj) .  The normalising constant C' does not affect the value of the entropy 

so for our purposes Fl can be replaced by 

(2.18) 

(2.19) 

which can be evaluated directly by FFT subroutines. 

Fourier coefficients, and PI = IF11'/P19 IFI~I' is the probability. 

S = S (  7') for a succession of times 

For vector quantities f there is no difference in principle. The Fl are the tabulated 

The procedure for determining the entropy is to fix At as above, and then to evaluate 

T = T, = 2"At, m = mo, mo+ 1, mo+2,.  . . . (2.20) 

For a regular trajectory S(T,) should stabilise when 2Ti1  becomes smaller than the 
frequency splitting between the two closest significant components. This does not 
happen, however, unless the Hanning method is used. 

It can be seen that a direct method of computation of the Fl using equation (2.17) 
requires the evaluation of about M Z  products. For M = 2" with positive integer m, the 
FFT method requires only about M log2 M products, resulting in a saving of a factor of 
about 100 for M = 1024 (Brigham 1974). Using the FFT method, the computing time 
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taken by the evaluation of the transforms is small by comparison with the time taken by 
stepwise integration of the trajectories. The more complicated the Hamiltonian, the 
less important does the time for the transforms become. 

3. The Hanning function 

In 0 2 we found that the use of a finite time interval, approximation A l ,  which is 
equivalent to the multiplication of f(t) by the square pulse g(t), replaced a S function in 
the transform by a function G(v  - v'). This has large numbers of significant side-lobes, 
decaying as l / ( v  - v'); see figure l(a). This problem is known as leakage, and makes 
the entropy very difficult to estimate. 

t 

P -  

r-" 

E 
C 

Frequency -L Frequency -L 

Figure 1. (a) The function IG(v - v0)l of equation (2.14). The large number of significant 
side-lobes causes serious difficulties with the numerical estimate of entropy. ( b )  The 
function IK(v - vo)l of equation (3.3). The reduction of the side-lobes compared with 
lG(v - vo)l is evident by comparison with (a), which is drawn to the same scale. The double 
arrows indicate the sample width. 

The side-lobes are large because the function g(t) has a sharp cut-off in time. The 
Hanning method (Brigham 1974) smooths this cut-off and thereby reduces the side- 
lobes to values so small that they can be neglected. The price is an increased width, 
which causes few problems. The function g(t) of equation (2.12) is replaced by 

(3.1) 

H ( ~ ) = ~ s ( ~ ) + $ ( s ( ~ - A ~ ) + s ( ~ + A ~ ) )  (3.2) 

g(t)h(t) = g(t) cos2(vt/T) = g(t) cos2(.rrAvt). 

The Fourier transform of h(t) is 

and of g(r)h(t) is 

1 sin(.rrvT) 1 sin[.n(v-Av)T] sin[.rr(v+Av)T] 
+ T  r ( v + A v ) T  

K ( v )  = G(  v)*H( v )  = - T +-( T 2 IWT 4 v ( v - A v ) T  
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The function IG(v)*H(v)l appears in figure l(6). The reduction in the side-lobes by 
comparison with )G(v)l in figure l(a) is evident. 

The effective width has been doubled to about 4 / T  = 4Av, but the first side-lobe has 
been reduced in size to 2% of the peak. The time of calculation is changed negligibly by 
the change in method. 

In 9 2 we saw that the calculated entropy of the tabulated transform was very 
sensitive to the choice of tabulation points. The sensitivity is reduced drastically by the 
use of the Hanning method, which enables us to obtain accurate estimates of the 
entropy for regular spectra in which the significant components are separated by at least 
4Av in frequency, using a tabulation interval of A V .  

Consider the function f ( t )  = c exp(2rivot). Its Fourier transform is cS(v - yo) ,  and 
the exact Fourier entropy is zero. The calculated entropy is given by 

(3.4) 

The value of Pl depends on the position of the tabulation points IAv with respect to the 
centre vo of the transform. Two examples are shown in figure l (b) .  

The entropy SHann of the function K(lAv - vo) has been calculated for a range of 
values of vo, and is found to vary between 0.8633 and 0.8676 with a mean of 0.8655. If 
we subtract off the mean value we obtain the correct entropy of zero, with an error of at 
most 2.5 X which is negligible for our purposes, so SHann may be considered as a 
constant, 

S H a n n =  0.8655. (3.5) 

If the trajectory is regular, the transform consists of a sum over S functions, so as 
soon as 4Av = 4 / T  is less than the closest distance between two significant S functions, 
each S function is replaced by a K function, each probability P, is replaced by a set of 
probabilities 

(3.6) Pr + PrPl, I = -2, -1,o, 1 , 2 , .  * . , 
the contribution to the entropy is replaced by 

and the exact entropy is given by 

s = Sca1c-E P r S H a n n =  Sca lc -SHann=  ScaIc-0.8655. (3.8) 
r 

Thus we should expect S ( T )  calculated according to equation (3.8) to vary when 4 / T  is 
larger than the significant frequency splitting, and then to remain constant. This is 
found to be the case for trajectories in the known regular regions of Hamiltonian 
systems. 

4. Irregular trajectories 

Irregular trajectories are defined as those that are not regular. They do not occupy 
invariant tori and they are not conditionally periodic. Consequently the Fourier 
transform of the time variation of a dynamical variable is not a sum over S functions for 
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an irregular trajectory. In other words, the Fourier spectrum is not discrete, but there is 
no evidence that the transform F ( v )  is a continuous function either, except for certain 
very special cases. There is some numerical indication that F ( v )  is non-zero over finite 
ranges of the frequency axis. The irregular trajectories defy detailed analysis, but the 
structure of their transforms and of the Fourier entropy is sufficiently different from the 
properties of the regular trajectories for the two types of trajectory to be distinguished. 

In practice we carry out exactly the same numerical procedure for the irregular 
trajectories as for the regular trajectories. The calculated time-dependent entropy 
S( T )  does not stabilise for large T, but continues to increase with T or oscillates wildly, 
and this difference in behaviour is used to distinguish the two types of trajectory. 

There are found to be a few ambiguous cases in which the entropy stabilises 
temporarily and later increases, or in which it oscillates and then stabilises, but the 
number of such trajectories is not usually very great. We show in the example of the 
following section that the Fourier entropy method for determining regularity is 
reasonably consistent with other methods. 

Some very special systems are ergodic: all their trajectories are irregular and have a 
continuous spectrum (Sinai 1961). In this case we can obtain the time dependence S ( T )  
of the Fourier entropy. 

Let p ( v )  be the normalised power density per unit frequency, so that for constant c 
m 

P ( V )  = c IF (412 ,  I-, d W ( V )  = 1 .  

Then we define the continuous Fourier entropy to be 

1 = - I dvp(v) In p ( v ) .  
m 

-m 

(4 .1 )  

(4.2) 

Unlike the Fourier entropy of a regular trajectory, Z depends on the units chosen for the 
frequency, but differences between entropies remain unchanged. 

Consider a time of integration T, which is so long that p ( v )  varies little within any 
range f width AV = 1/T.  Then the continuous entropy can be approximated by 

(4.3) 

and p ( v I )  is related to Pl = P ( v I )  by the differing normalisation conditions 

1 = C PI = AV 1 p ( ~ ) ,  

p ( ~ 1 )  = Pi/AV = TP1. 

(4.4) 

(4.5) 

1 I 

Therefore for a finite interval T the entropy Z ( T )  is related to S ( T )  by the expression 

(4.6) 

In practice we calculate S for both cases, so for a continuous spectrum, in which X (T) is 
constant for sufficiently large T, 

(4.7) 
For a continuous spectrum the calculated entropy S does not tend to a constant, but is 
linear in In T, with intercept X at In T = 0 and slope unity. 

For most systems the entropy of the irregular spectrum is not so well-behaved. 

(T) = - 1 PI In( TPl) = S( T )  -In T. 
1 

S ( T )  = 1 +In T. 
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5. Applications 

The Hamiltonian system described by Henon and Heiles (1964) was chosen as a test of 
the theory for several reasons: (i) It is simple analytically which makes the numerical 
integration fast. (ii) It is sufficiently complicated to exhibit most of the properties of 
general dynamical systems. (iii) It is well described in the literature (H6non and Heiles 
1964, Churchill et a1 1978). The Htnon-Heiles Hamiltonian describes a conservative 
anharmonic system of two degrees of freedom and is of the form 

H H - H ( ~ ,  P) = t ~ ’ +  u H - H ( q ) ,  

u H - H ( q )  = f q 2  + 4 ? 4 2  - $4 i. 
(4 ,  P) = (41, 4 2 ,  Pi, P z ) ,  (5.1) 

(5.2) 
The harmonic approximation without the cubic terms is degenerate. Figure 2 shows 

a contour plot of the potential function (5.2), which has an escape energy of t. 
Numerical solutions to the equations of motion have been used to determine the 

regular and irregular regions of phase space. Surfaces of section obtained by Htnon 
and Heiles (1964) are reproduced in figure 3 for various energies. Regular regions are 
dominated by continuous closed curves, a sample of which is shown in the figures. 
Irregular regions are characterised by the erratic scatter of points, through which no 
simple closed curve seems possible. It has been found (Ford and Lunsford 1970) that 
this description is oversimplified, but that the large-scale picture remains. 

1 

92 

-1 

4 

Figure 2. A Contour plot of the function U H . . ~  of equation (5.2). Lines of equipotential are 
drawn starting near the origin with UH-H = & and increasing uniformly in intervals of i&j to 
the equilateral contour UH-H = &j. 
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As a simple test of the entropy method we investigated ten trajectories with initial 
points chosen from the surfaces of section (figure 3), some from predominantly regular 
regions, others from irregular regions. These points are given in table 1 and indicated in 
figure 3. 

Numerical integration of Hamilton's equations of motion was performed over 
approximately 256 characteristic periods T, = 27r of the unperturbed motion using a 
Runge-Kutta method. For regular trajectories consistent results were obtained for 
different step lengths, of approximately 0.01 in units of the characteristic period T,. 
Because of the instability of the irregular trajectory, no reasonable interval of integra- 
tion could be used to give consistent results. However, a theorem quoted by Benettin et 
a1 (1976) shows that this inconsistency is of little importance, since the numerical errors 

1 .  . . . . .  e . . . .  

-0.L -0.2 0 0.2 04 0.6 
Y 

Y 

Figure 3(a), (b), see over for (e). 
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Y 

Figure 3. The intercepts of the phase space trajectories for the HCnon and Heiles system 
(5.1) for energies (a) A, ( b )  3 and (c )  i .  The initial points of the ten trajectories are labelled 
A to J and specified in table 1 .  

Table 1. Initial values of ten trajectories selected from surfaces of section (figure 3). 

Key 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

- X 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

P X  

0.493 295 
0.569 269 
0.370 954 
0.408 167 
0.473 759 
0.433 277 
0.488 803 
0.359 785 
0.390 491 
0.322 672 

Y 

0 
0.1 
0.4 
0 

-0.12 
0.07 
0.07 
0.32 
0.35 
0.26 

PY 

0.3 
0 
0.28 
0 
0.1 
0.24 
0.08 
0.2 
0.06 
0.3 

Energy 

0.166 67 
0.166 67 
0.166 67 
0.083 30 
0.125 00 
0.125 00 
0.125 00 
0.125 00 
0,125 00 
0.125 00 

have the effect of replacing one irregular trajectory by another one with very slightly 
differing initial conditions. The instability is used in the divergence method for 
determining irregularity. 

For purposes of comparison with our entropy method we use a divergence measure 
D ( T )  defined by 

D 2 ( T )  = T-*lp'( t ) -p( t ) l ' .  (5.3) 
D ( T )  is thus the RMS value of the distance in momentum space between two 

(initially) close trajectories (q ' (# ) ,  p ' ( t ) )  and ( q ( t ) ,  p ( t ) )  over an interval T. The initial 
points of the two trajectories differed typically by a factor of 0.999 999. 

For regular trajectories the measure is found to increase linearly with time. For 
irregular cases the rate is more like an exponential. The divergences for the ten 
trajectories specified by table 1 are shown in figure 4. There is maximum divergence for 
bounded trajectories corresponding to the size of the energy shell. 
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Figore 4. The divergence measurc D ( T )  (equation (5.3)) of the ten trajectories of table 1. 
For regular trajectories the measure increases linearly with time. For irregular cases the 
rate is more like an exponential. There is a maximum divergence corresponding to the size 
of the energy shell. 

From these results we label as regular a trajectory for which D ( T )  varies linearly 
with T to within 5%, 

For the trajectories B, F, G and D of figures 3 and 4 this quantity is less than 2%. 
Power spectra of these ten trajectories were obtained using the now standard FFT 

routines together with the Hanning modification as described in $0 2 and 3. The spectra 
shown in figure 5 are for trajectories of approximately 256T,, giving a resolution width 
4Aw -0.015. It can be seen that to this accuracy regular spectra are discrete while 
irregular spectra are more complicated. Another difference which cannot easily be seen 
in figure 5 is the small but apparently continuous component in the irregular 
spectrum over much of the frequency domain, which is not present in the regular 
spectrum The main features can be summarised by saying that regular spectra 
have few, strong components, while irregular spectra have many, weaker components. 
This has also been observed by Noid et a1 (1977). 

The entropy measures determined by the methods of $92 and 3 for the ten 
trajectories of table 1 are shown in figure 6 .  The zero component SHann = 0.8655 has 
been subtracted. It is found that the entropy functions of regular trajectories are 
constant to within 5 x low3 for T > 64Tc. According to the results of $ 2  this constancy, 
together with the low value of S ( T )  itself, is characteristic of regular trajectories. The 
entropy for irregular trajectories increases erratically with T. 
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A comparison of the surfaces of section, divergence measures and entropy measures 
shows good agreement among the three methods for detecting regular and irregular 
regions of phase space. 

There is no need to restrict the energy of trajectories to those of the given surfaces of 
section. Initial values can be chosen pseudo-randomly with uniform distribution in 
phase space throughout different energy shells using standard Monte Carlo methods. In 
this way 100 initial points were chosen subject to the conditions of boundedness 

q 2 <  1, U H - H ( q )  < a, ip2  + U H - H ( q )  <a. ( 5 . 5 )  

Such trajectories have position coordinates within the equilateral triangle of figure 
2, for all time. 

A new phenomenon makes its appearance now as a small instability (-0.1) in the 
entropy function for six of the eight trajectories with energy less than 0.04. The power 

0 012- 

0 1 
0.003 

E 0002 
,o 

c’ 
C 
0 

0.001 

0 
.I 

I , , , , , , , 
1.0 2 .o 3 .o 

Frequency 

( b l  

1 0  2.0 30 
Frequency 



Spectral entropy of orbits 

0 00124 

2067 

Frequency 

Figure 5. Power spectra for the trajectories ( a )  F, ( b )  J and ( c )  C taken over segments of 
approximately T = 256T,. The corresponding K ( o  -ao) function has a width 4Ao = 
0.015; to this resolution the spectrum of F is discrete. Conditions (5.4) and (5.6) indicate F 
is regular, J and C are irregular. 

spectra of these six consist of a solitary complex component, appearing as two 
overlapping components in some cases. The effect can be understood from the 
approximate degeneracy of the Hamiltonian function (5.1) for small values of energy. 
The entropy will continue to oscillate until the components are separated. For two close 
components the entropy function has a maximum of In 2 = 0.693, and this can be used 
as an alternative condition to be fulfilled by a regular trajectory. We thus label as 
regular a trajectory whose entropy function satisfies 

I A S ( T ) [  s 5 x 1 0 - ~  for T>64Tc (5.6) 
or 

S ( T )  S 0.693. 

Of the 100 trajectories 95 were found to be described unambiguously and identic- 
ally in character by the conditions (5.4) and (5.6). 

The distribution of regular cases among various energy intervals gives an estimate of 
the relative volume of regular and irregular regions. Figure 7 shows this estimate 
calculated by ‘binning’ the regular and irregular trajectories over the indicated interval 
of energy. Also shown is the distribution of regular regions obtained by HCnon and 
Heiles (1964). 

The two are not strictly comparable as their estimate is the relative area of regular 
regions of the corresponding surfaces of section. There is no reason why this should be 
similar in detail to the ratio of volumes of the full phase space. Also we have found a 
number of trajectories (ten) irregular according to conditions (5.4) and (5.6) over a 
period of 256Tc, but whose divergence over a period of 25Tc as used by HCnon and 
Heiles is that of a typical regular trajectory. 

The total computer time for the 100 trajectories was 16 min using a CDC7600. The 
corresponding time using just the entropy method would be 8 min. 
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Figure 6. The entropy measure S ( T )  (equation (3.8)) for the ten trajectories of table 1. 
SHann = 0.8655 has been subtracted off. S ( T )  stabilises after approximately 64T,. For 
irregular trajectories S( T )  increases erratically. The broken line indicates the maximum 
limit for S ( T ) .  

As mentioned in Q 2 both the entropy and the divergence method can be used for 
systems of more than two degrees of freedom. The final example chosen to illustrate the 
entropy method is a Hamiltonian system of three degrees of freedom which realistically 
describes the classical vibrational motion of the linear molecule carbonyl sulphide 
(OCS). We use the analytic form of Foord et a1 (1975) derived semi-empirically using 
spectroscopic data, which is 

The corresponding potential function is of a general quartic form with one quintic 
term to adequately represent the ‘Fermi resonance’. Table 2 gives the values of the 
constants w and k.  The harmonic approximation is not degenerate. This truncated 
polynomial form is known to give accurate energy levels both quantum mechanically 
(Foord et a1 1975) and by semiclassical methods (Percival and Pomphrey 1978) up to 
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F i  7. An estimate of the relative volume of regular phase space of the HCnon and Heiles 
system (5.2), obtained from the ratio of regular trajectories to the total within an energy 
interval of width 0.02. The full curve is a similar estimate by Htnon and Heiles (1964). As 
explained in 0 5 the two are not strictly comparable. 

Table 2. Force constants in the expression for Hmw(4.3) 

constant value constant value 

875.70 
523-62 

2092.46 
-33.59 

53.52 
42.95 

-125.24 
51.30 

-67.01 
1.55 

-4.40 
-4.95 

6.40 
-2.38 

0.84 
1.77 

-19.28 
3.98 

-0.450 

energies of 5000 in the usual units of cm-'. The energy at which some of the classical 
trajectories are unbounded is approximately 13 800. 

Figure 8 is the corresponding estimate of the relative volumes of regular and 
irregular regions for the OCS system using the same method as for figure 7. The sample 
of trajectories used is 150. The full investigation of 150 points took 40 min using a 
CDC7600. 

The indication of a significant irregular region at energies 5000 and beyond is 
important for comparison with observed vibrational spectra. 
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Figure 8. An estimate of the relative volume of regular phase space of the OCS system (5.7), 
obtained in the same manner as for figure 7. The energy interval here is 2000 cm-', and the 
vertical lines represent i one standard deviation. The anomalous value in the 2000- 
4000 cm-' interval is caused by the 4wl-w3 resonance, which is exceptionally small at 
approximately 2 cm-'. The problem does not occur at the higher energies which are of 
practical interest, so no effort was made to integrate for longer periods with better statistics 
to resolve the corresponding regular and irregular orbits. 

6. Conclusions 

For a classical system of a finite number of degrees of freedom, and for a given 
dynamical variable and bound classical trajectory, a Fourier entropy S is defined, which 
is a measure of frequency spread. It converges for regular trajectories and diverges for 
irregular trajectories. This distinction is used as an effective practical numerical method 
of distinguishing the two types of trajectory, as illustrated by the well-known HCnon- 
Heiles potential and by a complicated approximate potential for a triatomic molecule. 
The m and the Hanning technique are essential components of the method. 

For finite times T a time-dependent entropy S ( T )  is defined which converges 
rapidly to S for long times and regular trajectories, but which diverges for irregular 
trajectories. Both S and S ( T )  have a physical significance in the application of 
semiclassical mechanics to quantal systems. 

It is possible that there is a connection between the Fourier entropy and the K 
entropy (Benettin e? a1 1976), but we have not discovered such a connection. 
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